Adaptive RAG
Initialize Logger
try( var file = new java.io.FileInputStream("./logging.properties")) {
var lm = java.util.logging.LogManager.getLogManager();
lm.checkAccess();
lm.readConfiguration( file );
}
var log = org.slf4j.LoggerFactory.getLogger("AdaptiveRag");
Test Issue #32
Issue concerns a problem on AdaptiveRag
implementation referred to AnswerGrader
task
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.input.Prompt;
import dev.langchain4j.model.input.structured.StructuredPrompt;
import dev.langchain4j.model.input.structured.StructuredPromptProcessor;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.model.output.structured.Description;
import dev.langchain4j.service.AiServices;
import dev.langchain4j.service.SystemMessage;
import java.time.Duration;
import java.util.function.Function;
public class AnswerGrader implements Function<AnswerGrader.Arguments,AnswerGrader.Score> {
static final String MODELS[] = { "gpt-3.5-turbo-0125", "gpt-4o-mini" };
/**
* Binary score to assess answer addresses question.
*/
public static class Score {
@Description("Answer addresses the question, 'yes' or 'no'")
public String binaryScore;
@Override
public String toString() {
return "Score: " + binaryScore;
}
}
@StructuredPrompt("""
User question:
{{question}}
LLM generation:
{{generation}}
""")
record Arguments(String question, String generation) {
}
interface Service {
@SystemMessage("""
You are a grader assessing whether an answer addresses and/or resolves a question.
Give a binary score 'yes' or 'no'. Yes, means that the answer resolves the question otherwise return 'no'
""")
Score invoke(String userMessage);
}
String openApiKey;
@Override
public Score apply(Arguments args) {
ChatLanguageModel chatLanguageModel = OpenAiChatModel.builder()
.apiKey( System.getenv("OPENAI_API_KEY") )
.modelName( MODELS[1] )
.timeout(Duration.ofMinutes(2))
.logRequests(true)
.logResponses(true)
.maxRetries(2)
.temperature(0.0)
.maxTokens(2000)
.build();
Service service = AiServices.create(Service.class, chatLanguageModel);
Prompt prompt = StructuredPromptProcessor.toPrompt(args);
log.trace( "prompt: {}", prompt.text() );
return service.invoke(prompt.text());
}
}
var grader = new AnswerGrader();
var args = new AnswerGrader.Arguments( "What are the four operations ? ", "LLM means Large Language Model" );
grader.apply( args );
prompt: User question:
What are the four operations ?
LLM generation:
LLM means Large Language Model
Score: no
var args = new AnswerGrader.Arguments( "What are the four operations", "There are four basic operations: addition, subtraction, multiplication, and division." );
grader.apply( args );
prompt: User question:
What are the four operations
LLM generation:
There are four basic operations: addition, subtraction, multiplication, and division.
Score: yes
var args = new AnswerGrader.Arguments( "What player at the Bears expected to draft first in the 2024 NFL draft?", "The Bears selected USC quarterback Caleb Williams with the No. 1 pick in the 2024 NFL Draft." );
grader.apply( args );
prompt: User question:
What player at the Bears expected to draft first in the 2024 NFL draft?
LLM generation:
The Bears selected USC quarterback Caleb Williams with the No. 1 pick in the 2024 NFL Draft.
Score: yes